Extensions 1→N→G→Q→1 with N=C2 and Q=C232D4

Direct product G=N×Q with N=C2 and Q=C232D4
dρLabelID
C2×C232D464C2xC2^3:2D4128,1116


Non-split extensions G=N.Q with N=C2 and Q=C232D4
extensionφ:Q→Aut NdρLabelID
C2.1(C232D4) = C24.50D4central extension (φ=1)64C2.1(C2^3:2D4)128,170
C2.2(C232D4) = C24.5Q8central extension (φ=1)64C2.2(C2^3:2D4)128,171
C2.3(C232D4) = C24.634C23central extension (φ=1)128C2.3(C2^3:2D4)128,176
C2.4(C232D4) = C232D8central stem extension (φ=1)64C2.4(C2^3:2D4)128,731
C2.5(C232D4) = C233SD16central stem extension (φ=1)64C2.5(C2^3:2D4)128,732
C2.6(C232D4) = C232Q16central stem extension (φ=1)64C2.6(C2^3:2D4)128,733
C2.7(C232D4) = C429D4central stem extension (φ=1)16C2.7(C2^3:2D4)128,734
C2.8(C232D4) = C42.129D4central stem extension (φ=1)32C2.8(C2^3:2D4)128,735
C2.9(C232D4) = C4210D4central stem extension (φ=1)32C2.9(C2^3:2D4)128,736
C2.10(C232D4) = C42.130D4central stem extension (φ=1)32C2.10(C2^3:2D4)128,737
C2.11(C232D4) = M4(2)⋊D4central stem extension (φ=1)32C2.11(C2^3:2D4)128,738
C2.12(C232D4) = M4(2)⋊4D4central stem extension (φ=1)32C2.12(C2^3:2D4)128,739
C2.13(C232D4) = M4(2)⋊5D4central stem extension (φ=1)168+C2.13(C2^3:2D4)128,740
C2.14(C232D4) = M4(2).D4central stem extension (φ=1)328-C2.14(C2^3:2D4)128,741
C2.15(C232D4) = C422D4central stem extension (φ=1)164C2.15(C2^3:2D4)128,742
C2.16(C232D4) = (C2×C4)⋊2D8central stem extension (φ=1)64C2.16(C2^3:2D4)128,743
C2.17(C232D4) = (C22×D8).C2central stem extension (φ=1)64C2.17(C2^3:2D4)128,744
C2.18(C232D4) = (C2×C4)⋊3SD16central stem extension (φ=1)64C2.18(C2^3:2D4)128,745
C2.19(C232D4) = (C2×C8)⋊20D4central stem extension (φ=1)64C2.19(C2^3:2D4)128,746
C2.20(C232D4) = (C2×C8).41D4central stem extension (φ=1)64C2.20(C2^3:2D4)128,747
C2.21(C232D4) = (C2×C4)⋊2Q16central stem extension (φ=1)128C2.21(C2^3:2D4)128,748
C2.22(C232D4) = (C2×C8).2D4central stem extension (φ=1)324C2.22(C2^3:2D4)128,749
C2.23(C232D4) = M4(2).4D4central stem extension (φ=1)32C2.23(C2^3:2D4)128,750
C2.24(C232D4) = M4(2).5D4central stem extension (φ=1)32C2.24(C2^3:2D4)128,751
C2.25(C232D4) = M4(2).6D4central stem extension (φ=1)64C2.25(C2^3:2D4)128,752
C2.26(C232D4) = C24⋊D4central stem extension (φ=1)16C2.26(C2^3:2D4)128,753
C2.27(C232D4) = C24.31D4central stem extension (φ=1)32C2.27(C2^3:2D4)128,754

׿
×
𝔽